
A seminar on learning theory

Instructed by Amir Yehudayoff, Department of Mathematics, Technion-IIT

2

Contents

0 Outline 5

1 Introduction 7

1.1 Several models . 8

2 VC dimension 13

2.1 Sauer-Perles-Shelah . 15

2.1.1 First proof: Shifting . 16

2.1.2 Second proof: Algebraic method 17

2.2 Cover numbers . 19

3 PAC learning VC classes 21

3.1 VC dimension . 22

3.2 Double sampling . 23

4 Cover numbers 25

4.1 Preliminaries . 26

4.2 Proof . 27

5 Majority vote game 31

5.1 The majority-vote game . 31

5.2 The power of majority gates . 35

6 Compression schemes for Dudley classes 37

6.1 Compression schemes . 37

6.2 Halfspaces . 38

6.3 A compression scheme . 39

6.4 Dudley classes . 42

6.4.1 Sign rank . 42

3

4 CONTENTS

7 Sample compression schemes 45

7.1 Definition . 45

7.2 Learning using a sample compression scheme 46

7.2.1 Connection to PAC learning . 46

7.3 Compression schemes for maximum classes 48

8 Population recovery 51

8.1 Partial IDs . 53

8.1.1 Example for need for several Extends 57

8.2 Solving the distribution recovery problem 58

9 Teaching 61

9.1 Teaching dimension . 61

9.1.1 Notation . 62

9.2 Monomials and 2-term DNFs . 63

9.2.1 Karnaugh map . 63

9.3 Importance of context . 64

9.4 Optimal teachers . 64

Chapter 0

Outline

The aim this seminar is to survey, discuss and explore mathematical aspects of learning.

As we shall see, learning is related to questions in geometry, topology, combinatorics,

computational complexity, logic, and more.

The participants are expected to take an active part in the meetings, and to present

some work. From time to time, exercises will be given to help digest the material, and

a final assignment may be given as well.

5

6 CHAPTER 0. OUTLINE

Chapter 1

Introduction

“Humans appear to be able to learn new concepts without needing to be programmed

explicitly in any conventional sense.”

A theory of the learnable / L. Valiant

Examples. Before providing formal definitions, let us give some examples.

• Sequences: 0, 1, 1, 2, 3, 5 what is next?

• Shapes: draw some points with yes/no labels. What is shape?

• Image recognition.

• Your examples?

The psychological aspects of learning are fascinating, but we focus will be on the

mathematics of it. For this we need definitions.

How do we abstractly define the concept we aim to learn? All examples above

can be abstracted by a single object, a function: N→ N, R2 → {0, 1}, and say [1000]2 →
{a, b, . . . , z}10.

To what space does the concept belong to? We can try the space of all func-

tions say N → N in the first example. In this case, how do we continue the sequence?

There is no unique extension. But intuitively, or from experience, we know that the

next element is 8. We model this by restricting the space of functions. Roughly speak-

ing, we reduce it to the space of functions with “simple” explanation or description. In

the example, we can reduce it to the vector space of sequence that are Fibonacci and

7

8 CHAPTER 1. INTRODUCTION

then the next element is uniquely defined. More abstractly, we choose some combinato-

rial/geometric/topological ways to restrict the function space.

Definition 1. The instance space is a set X. The label set is a set Σ. A concept is

c : X → Σ. A concept class is C ⊆ ΣX .

In many cases we are interested in classification L = {0, 1}. We think of C and X as

known. There is some c ∈ C that is unknown and we wish to learn. How do we define

“learn”? There are many ways, as we shall see. Can you provide some suggestions?

What does the learner see? The learner gets to see some information concerning

c. The simplest type is samples of the form (x1, c(x1)), (x2, c(x2)), . . . and from this info

he needs the recover c.

Consider the example of X = R and C the set of polynomials of degree at most d. In

this case, from d+ 1 labelled samples we can fully reconstruct c as long as the instances

x1, . . . , xd+1 are pairwise distinct. This is done by interpolation: c =
∑d

j=0 ajx
j and

c(xi) =
d∑
j=0

ajx
j
i .

Stated differently the evaluation vector e = (c(xi)) is obtained by multiplying a d+ 1×
d + 1 Vandermonde matrix A by the vector of coefficients a of c. That is, e = Aa. So

a = A−1e gives us a full description of c.

What if we do not get d+ 1 distinct evaluation points? Then we can not in general

uniquely recover c. So part of the definition should specify the way samples are gathered

(cleverly, randomly, adversarially,...).

1.1 Several models

Let us consider another example. Let X = [n] ⊂ R. Let C : X → {0, 1} be the set of

ci, i ∈ [n], so that ci(x) = 1 iff x ≥ i. Roughly speaking, it is a family of n rays. We

discuss several learning frameworks, using this example.

Self directed learning. The student chooses the sample points according to an order

of his choice x1, x2, . . . , xn in an adaptive way. At every stage t the student chooses a

point xt that he has not seen so far. He also chooses an hypothesis ht : X → Σ that may

depend on what he has seen so far, and is assumed consistent with what he has seen so

far. (We may insist that ht is in C, which is called proper learning.) He then declares

c(xt) = ht(xt). If he is wrong then it costs him a point, and if he is correct then he just

keeps learning. He then chooses the next hypothesis ht+1 and the next point xt+1.

1.1. SEVERAL MODELS 9

Let us give a formal definition. Fix a concept class C. For every adaptive order

π = {x1, x2, . . . , xn} on X, and for every choice h = (h1, . . . , hn) of n functions as above,

the cost of learning c ∈ C is defined is

costc(π, h) = |{t ∈ [n] : ht(xt) 6= c(xt)}|.

The self directed learning complexity of c in C is defined as

SDL(C) = min
π

min
h

max
c∈C

costc(π, h).

It is the minimum over all student, and for each student the maximum over all concepts.

What should the student/learner do to minimize the cost of learning in our running

example? Here is a suggestion. He chooses xt = t. He declares h1(1) = 0. If he is wrong,

c(1) = 1 which means that c = c1. If he is right then there is no cost, and he continues

with h2(2) = 0. If he is wrong, c = c2, and otherwise he continues. Overall, the cost of

this learner is just 1 point. Other students may make many more mistakes.

Online learning (online mistake bound). In this model, the order on X is chosen

by an adversary. The same cost is defined. Roughly speaking, here the learner is

measured against the worst or most challenging teacher, rather than his own choices.

The complexity is

OL(C) = max
π

min
h

max
c∈C

costc(π, h).

Clearly, OL(C) ≥ SDL(C).

What is the worst order in running example? Choose x1 = n/2. If the student says

h1(x1) = 0, then he “goes right” and otherwise we go left.

Exercise: Show that the online complexity of C from the running example is dlog ne.

Probably approximately correct (PAC) learning. This model was defined by

Valiant, and it was a seminal definition.

In this model there is a probability distribution µ on X. (We assume X is finite for

now.) The learner gets to see random examples of the form (x, c(x)) where x ∼ µ. The

distribution µ is meant to capture the frequency according to which examples appear in

nature. The learner does not know µ.

The learner objective is: given as few examples as possible (x1, c(x1)), . . . , (xm, c(xm)),

where x1, . . . , xm are i.i.d. according to µ, output an hypothesis h : X → Σ that is a

good approximation to c:

µ({x : h(x) 6= c(x)}) ≤ ε.

10 CHAPTER 1. INTRODUCTION

The learning process is random, so this should happen with probability at least 1− δ.
Here is a brief geometric perspective (we shall elaborate further on in future). We

think of ΣX as a (pseudo) metric space. The distance between c, c′ is

µ({x : h(x) 6= c(x)}).

PAC learning can thus be thought of as finding an approximation to a given point in

the metric space using a few examples as possible.

Think of a baby seeing random pictures of objects. The baby is told how to classify

each picture. His goal is to come up with a procedure to classify new picture that he

has not yet seen.

Definition 2 (PAC learnability). We say that C is PAC learnable with m examples if

there is map H so that the following holds. Define the set of C-labelled samples of size

smaller than 1 ≤ k ≤ ∞ as

LC(k) = {(Y, y) : Y ⊆ X, |Y | < k, y ∈ C|Y }.

The map H generates hypotheses: H : LC(d+ 1)→ ΣX so that for every c ∈ C and for

every probability distribution µ on X,

Pr
µd

[{
Y ∈ Xd : µ({x ∈ X : hY (x) 6= c(x)}) ≤ 1

3

}]
≥ 2

3
,

where hY = H(Y, c|Y).

Roughly speaking, an hypothesis generated by H using d independent samples is a

µ-approximation of c with reasonable probability. If the image of H is contained in C,

we say that C is properly PAC learnable.

Let us see how to PAC learn the running example. Given m examples, order them

as x1 ≤ x2 ≤ . . . ≤ xm in [n]. If c on all of them is 0, output h = cxm+1. Otherwise, let

j be the smallest integer so that c(xj) = 1 and output h = cxj .

By the structure of C, we know h ≤ c pointwise.

Claim 3. If m ≥ 10 log(1/δ)/ε then Prµm [µ({x : h(x) 6= c(x)}) > ε] < δ.

Later, we shall see a more general way to prove this claim.

Proof sketch. Assume c = ci.

If µ(i) ≥ ε then the probability that i 6∈ {x1, . . . , xm} is at most (1 − ε)m < δ. The

proof is complete in this case, since if i ∈ {x1, . . . , xm} then h = c.

Otherwise, let i′ ∈ [n] be the largest integer so that i′ ≥ i and µ({i, . . . , i′}) < ε.

1.1. SEVERAL MODELS 11

If i′ = n then c is ε-close to the zero function, so c is also ε-close to any h that is at

most c.

Otherwise, ...

We can keep analyzing the construction case by case, looking at properties of µ with

respect to c. We will not provide full details here, since we shall prove a more general

theorem later on (so called double sampling argument).

12 CHAPTER 1. INTRODUCTION

Chapter 2

VC dimension

In this part, we define and investigate a combinatorial property that captures PAC

learnability for boolean concept classes. It was defined by Vapnik and Chervoninkis in

1971, in the context of statistics and probability theory.

Definition 4 (VC dimension). Let C ⊆ {0, 1}X . A set Y ⊆ X is shattered in C if for

every Z ⊆ Y there is c ∈ C so that c|Z = 1 and C|Y−Z = 0. The VC dimension of C is

the maximum size of a set that is shattered in C.

Thinking of C as a binary matrix with rows labelled by c ∈ C and columns by

x ∈ X, a subset of columns Y is shattered if all the 2|Y | possible different zero-one

patterns appear in the columns in Y . Another perspective of V C(C) is the ability of

concepts in C to separate points in X. The following examples may help to clarify.

Examples.

1. What are the shattered subsets of the following? What is its VC dimension?
0 0 1

0 1 1

1 0 0

1 1 0

 .

2. X = R and C consists of all intervals.

For every x ∈ X, there is c0, c1 ∈ C so that c0(x) = 0 and c1(x) = 1 so V C(C) ≥ 1.

For every distinct x, x′ ∈ X, there is c00, c10, c01, c11 ∈ C so that cbb′(x, x
′) = bb′.

Draw the 4 intervals. So V C(C) ≥ 2.

However, if x < x′ < x′′ then every interval that contains x, x′′ also contains x′ so

that pattern 101 does not appear. Overall V C(C) = 2.

13

14 CHAPTER 2. VC DIMENSION

3. X = R2 and C consists of axis parallel rectangles.

There are 4 points with 16 patterns (every subset of them can be separated).

However, if p1, . . . , p5 are distinct points in the plane and p1 an uppermost point,

p2 is a lowermost point, p3 is a leftmost point and p4 is a rightmost point, then

the pattern 11110 does not appear. So V C(C) = 4.

4. Union of a finite number of intervals with rational endpoints on the real line:

C = {∪n(pi, qi) | pi, qi ∈ Q, n ∈ N}.

For any finite sample of points on the line, one can place a sufficient number of

intervals to realize any labeling, therefore V Cdim(C) =∞.

5. Sinus:

C = {sign(sin(ωx+ θ) : ω, θ ∈ R}.

Then, V Cdim(C) =∞, as for every finite set of points all possible labellings can

be realized by choosing a sufficiently large frequency ω and appropriate phase.

VC dimension implies PAC learnability. A fundamental and well-known result of

Vapnik and Chervonenkis and of Blumer, Eherenfeucht, Haussler, and Warmuth states

that every boolean concept class C can be properly PAC learned with finitely many

examples iff V C(C) <∞. We now state the theorem (in the harder direction), but will

prove it only later on. The proof uses a clever double sampling argument.

Theorem 5. Let C ⊆ {0, 1}X with1 |X| < ∞ and V C(C) = d. Let c ∈ C. Let µ be a

probability distribution on X. Let Y be a multi-set of m independent samples from µ.

Let h be any function in C so that h|Y = c|Y . Then, for every ε > 0,

Pr[µ({x : h(x) 6= c(c)}) > ε] ≤ 2
(em
d

)d
(1− ε/4)m.

Specifically, if ε = δ = 1/3 then C can be PAC learnt with2 O(d log d) many examples,

with accuracy ε and error probability δ. The learning algorithm chooses any hypothesis

that is consistent with the given samples. Note that it does not guarantee efficient

learning. The proof will be given later in Chapter 3.

Some simple properties. The following operations do not increase the VC dimen-

sion.

1We assume this here to eliminate measurability issues.
2Big O and Ω notation means up to absolute constants.

2.1. SAUER-PERLES-SHELAH 15

1. Projections: If Y ⊆ X then V C(C|Y) ≤ V C(C).

2. Deletion: V C(C − {c}) ≤ V C(C).

3. Translations: For every v ∈ {0, 1}X , we have V C(v+C) = V C(C) where addition

is modulo 2.

Exercise: What is the VC dimension of the following classes?

• A linear subspace of dimension k in Fn2 .

• The set of all convex shapes in the plane.

• The set of triangles in the plane.

Halfspaces An important concept class is that of halfspaces. Let X ⊆ Rd and C ⊆
{0, 1}X be the defined by halfspaces: c ∈ C iff there are α ∈ Rd and θ ∈ R so that

c(x) = 1 iff
∑

i αixi ≥ θ. Draw in the plane.

This type of functions appear in many places: passing a course, economics, some

models of the brain, ...

Claim 6. If C is the set of halfspaces in the plane then V C(C) = 3.

Sketch. Every 3 points that are not collinear can be separated by C.

If we choose 4 points in the plane, there are 2 options. One is that they are not

convexly independent, in which case the pattern 1110 does not occur. The other is that

they are convexly independent, in which case the pattern 1010 does not occur.

Exercise: What is VC dimension of halfspaces in Rd?

2.1 Sauer-Perles-Shelah

Scribe: Shay Moran

One of the most important properties of classes of low VC dimension is that they

have small projections.

16 CHAPTER 2. VC DIMENSION

Lemma 7 (Sauer-Perles-Shelah3). Let C ⊆ {0, 1}X with |X| = n and V C(C) = d.

Then,

|C| ≤
(
n

≤ d

)
:=

d∑
i=0

(
n

i

)
≤
(en
d

)d
.

We shall see its importance later on and also prove in 2 ways. We first show the

second inequality: By the binomial identity and the fact that (1 + x) ≤ ex,(
d

n

)d d∑
i=0

(
n

i

)
≤

d∑
i=0

(
d

n

)i(
n

i

)
≤

n∑
i=0

(
d

n

)i(
n

i

)
=

(
1 +

d

n

)n
≤ ed.

Tightness. Consider the hamming ball of radius d around 0. How many concepts are

there? What is the VC dimension? The hamming ball demonstrates the tightness of

Sauer’s lemma. Concept classes for which Sauer’s lemma is tight are called maximum

classes. They have a rich combinatorial structure, and were studied in combinatorics,

geometry and machine learning.

2.1.1 First proof: Shifting

The first proof uses an operation that does not increase the VC dimension but leaves

the size as is: Shifting. This is an important technique and has several other variants

than we present here (and more applications).

High level. Let C ⊆ {0, 1}n be a concept class of VC dimension d. We will transform

C to a concept class Cend with the following properties:

• |Cend| = |C|, and

• Cend is a subset of a hamming ball of radius d.

Sauer’s lemma then follows (why?).

Notation. Let c1, c2 ∈ {0, 1}n, and let x ∈ [n]. We say that c1 and c2 are x-neighbors

if c1 and c2 agree on [n]− {x} and disagree on x. We say that C is downward closed if

for every c2 ∈ C, and c1 ≤ c2, it holds that c1 ∈ C.

Example. The running example is not downward closed, and any hamming ball

around the 0 concept is downward closed.

3Some people call it the Sauer-Perles-Shelah-Perles lemma, since Perles proved it twice, indepen-
dently.

2.1. SAUER-PERLES-SHELAH 17

Shifting. For x ∈ [n], define a shifting operator Sx in the x’th direction. The class

Sx(C) is a (new) concept class of the same size as C that is obtain by pushing the

concepts in C downwards in the x’th direction if possible. That is, Sx(C) is obtained

from C by the following:

For all c ∈ C such that c(x) = 1, if the x-neighbor of c is not in C then replace c by its

x-neighbor.

Example. Shifting the running example once in each coordinate. What are the con-

cept classes for which Sx(C) = C for all x ∈ [n]?

Claim 8. V C(Sx(C)) ≤ V C(C). In fact, if Y ⊆ X is shattered in Sx(C) then it is

shattered in C.

Proof. Let Y be shattered in Sx(C). If x 6∈ Y then the claim holds, since we did not

change the C|Y . Otherwise, every pattern that has a 1 at x in Sx(C) also appears in

C, since the same vector is also in C. So, consider a pattern v that has a 0 in x. Since

Y is shattered by Sx(C) then also v′, the x-neigbour of v appears in Sx(C). Therefore

v′ appears also in C. Now, since v′ appears in both C, and Sx(C), it follows that its

x-neighbour, v, appears in C. So, Y is also shattered by C.

By repeatedly shifting C, we get to a class Cend that is downward closed (why?).

Moreover, V C(Cend) ≤ V C(C). This implies that Cend is contained in a hamming ball

of radius d around 0. The Sauer-Perles-Shelah lemma follows.

Exercise. Let C ⊆ {0, 1}n, and let C ′ be a class which is obtained by shifting C once

on each coordinate (in any order). Show that C ′ is downward closed.

In fact, the proof yields a stronger statement. Denote by St(C) the set of Y ⊆ X

that are shattered in C. Then,

|C| ≤ |St(C)|.

This is indeed stronger since

St(C) ⊆
(

X

≤ V C(C)

)
:= {Y ⊆ X : |Y | ≤ V C(C)}.

2.1.2 Second proof: Algebraic method

The second proof is an example of using algebraic objects to prove combinatorial state-

ments. This is a very powerful method, and has many applications. In many cases, the

proof is based on judiciously defining a vector space V and computing its dimension in

2 different ways.

18 CHAPTER 2. VC DIMENSION

High level. We define a vector space V of dimension |C|, and prove that dim(V) ≤(
n
≤d

)
by finding a spanning set of this size. The Sauer-Perles-Shelah lemma follows.

The vector space. Fix some field F, say, F = R. The vector space V is the space of

all functions from C to F:

V = {f : C → F}.

It is indeed a |C|-dimensional vector space.

An equivalence relation. Let U be the space of n-variate polynomials4 P (x1, . . . , xn)

from {0, 1}n to F. Every P ∈ U corresponds to P |C ∈ V . But every vector in V

corresponds to many elements of U . For P,Q ∈ U , write P ∼ Q if P |C = QC . If P = Q

then P ∼ Q but the other direction does not necessarily holds. If C is our running

example then the polynomial P = x1(1 − x2) satisfies P ∼ 0 but P 6= 0. We can also

define V as U/ ∼.

A basis. Let U(r) ⊆ U be the set of all multilinear monomials of total degree at most

d. Thus, |U(r)| ≤
(
n
≤r

)
. Let V (r) = U(r)/ ∼. Thus, |V (r)| ≤ |U(r)|. The following

claim thus completes the proof.

Claim 9. The set V (d) spans V .

Proof. First, the set U(n) spans U , and so V (n) spans V . This is because every indicator

function can be represented as a multilinear polynomial; for example, for the zero element

in {0, 1}n it is ∏
i∈[n]

(1− xi)

It remains to show that every monomial in V (n) can be expressed as a linear combi-

nation of the monomials in V (d). Let xY =
∏

i∈Y xi ∈ V (n). We proceed by induction

on |Y |. We can of course assume that |Y | > d. This implies that there exist r ∈ {0, 1}Y
such that for all c ∈ C,

c|Y 6= r.

Assume for simplicity that r = 0. Consider

P =
∏
i∈Y

(xi − 1).

It holds that

P |C = 0.

4We use variables x1, x2, . . . even though x also denotes an element of [n].

2.2. COVER NUMBERS 19

Specifically,

0 ∼ P = xY +QY ,

where the total degree of QY is smaller than |Y |. By induction, QY is in the span of

V (d). Since xY ∼ −QY we get that xY is in this span as well.

2.2 Cover numbers

A useful perspective that we shall discuss several time throughout the seminar is that

of C as a metric space. Define the normalised hamming distance on {0, 1}n by

dist(c1, c2) =
|{i ∈ [n] : c1(i) 6= c2(i)}|

n
.

It is a metric and 0 ≤ dist ≤ 1.

Theorem 10. Let ε ∈ (0, 1] such that for all c1 6= c2 in C ⊆ {0, 1}n,

dist(c1, c2) ≥ ε.

If V C(C) = d then

|C| ≤
(

100 log(2/ε)

ε

)d
.

Later on, we will see a more complicated proof of a stronger statement [Haussler]

saying that in fact

|C| ≤ (100/ε)d .

Two comments that may help to understand the meaning of the theorem (the proofs are

left as exercises):

1. If there is no constraint on the VC dimension then the size of such C can be

exponentially large: There exists C ⊆ {0, 1}n of size |C| ≥ 2n/100 such that for all

c1 6= c2 in C,

dist(c1, c2) ≥ 1/4.

(Hint: a random choice of C will do.)

2. This demonstrates a similarity between VC dimension and euclidean dimension:

Let C ⊆ Rn be such that C is contained in a linear subspace of dimension d.

Assume that ‖c‖ ≤ 1 for all c ∈ C, where ‖ · ‖ is say the L2-norm. Let ε ∈ (0, 1]

such that for all c1 6= c2 in C,

‖c1 − c2‖ ≥ ε.

20 CHAPTER 2. VC DIMENSION

Then,

|C| ≤ (4/ε)d .

(Hint: a volume argument.)

The proof we present demonstrates the probabiitemizeic method, which is another

central tool introduced by Erdos.

Proof. Let m denote |C|, and let k = 2 log(m)/ε. Pick x1, . . . , xk independent uniform

samples from [n], and consider the random class C ′ = C|{x1,...xk}. Thus, |C ′| ≤ |C|. Let

E denote the event |C ′| < |C|. We shall first prove that Pr[E] < 1. Indeed, for each

1 ≤ i < j ≤ m, let Ei,j be the event that ci and cj agree on {x1, . . . , xk}. Thus,

E =
⋃

1≤i<j≤n

Ei,j.

Since the distance of every pair ci 6= cj in C is at least ε,

Pr[Ei,j] ≤ (1− ε)k.

The union bound implies

Pr(E) ≤ m2(1− ε)k < 1,

by choice of k.

Since Pr[E] < 1, there are x1, . . . , xk so that the size of C ′ = C|{x1,...,xk} is the same

as |C|. Now, by Sauer’s lemma,

m = |C| = |C ′| ≤
(
ek

d

)d
=

(
2e log(m)

ε · d

)d
.

So,

m ≤
(

2e log(m)

ε · d

)d
.

This implies that (exercise)

m ≤
(

100 log(2/ε)

ε

)d
.

Chapter 3

PAC learning VC classes

Scribe: Anat Kira and Yoni Mirzae

In many learning situations, the learner (or algorithm) is given m examples sampled

from some fixed unknown distribution µ, and the learner generates an hypothesis based

on these examples with the required accuracy and confidence.

Consider, for example, the case of classifying emails as spam/non-spam. We would

like our learning algorithm to be able—after seeing m emails sampled i.i.d. and their

classification—to tell if any other random email is spam or not and to be right with some

required probability. The probably approximately correct (PAC) model, introduced in

previous chapters, formalizes this [Valiant 84].

Our learners here will be consistent:

Definition 11. A function H from sample space to hypothesis space is consistent if

for all c, Y ,

H(Y, c|Y)|Y = c|Y .

Example. The problem of learning axis-parallel rectangles in the plane is PAC-learnable.

Here is an algorithm to learn a concept c ∈ C: Keep track of the minimum and maxi-

mum x and y coordinates of all positive examples. Let l′, r′, b′, t′ be these values (l for

left, r for right, b for bottom and t for top). Predict that the concept is

h = [l′, r′]× [b′, t′].

If there are no positive examples, let h = ∅.

Claim 12. This algorithm is a learning function for C with sample complexity at most
4
ε
ln(4/δ).

21

22 CHAPTER 3. PAC LEARNING VC CLASSES

Proof. Assume the concept to be learned is [l, r] × [b, t]. A property that always holds

by construction is that the output hypothesis h satisfies h ⊆ c. Thus, if P (c) < ε then

err(h) = µ{h 6= c} < ε always and we are done. Otherwise, define 4 side rectangles

within c:

Rleft = [l, x]× [b, t],

where

x = inf{x : µ([l, x]× [b, t] ≥ ε/4},

and Rright, Rbottom and Rtop are defined similarly. Let Y = (x1, ..., xm) be the m input

examples. Then,

µ(Rleft contains no example) = µ(Rleft ∩ Y = ∅) ≤ (1− ε/4)m.

And the same holds for the other side rectangles. Let E be the event that some side

rectangle contains no examples, i.e.

E = {Rleft ∩ Y = ∅} ∪ {Rright ∩ Y = ∅} ∪ {Rbottom ∩ Y = ∅} ∪ {Rtop ∩ Y = ∅}.

Thus,

P (E) ≤ 4(1− ε/4)m ≤ 4e−mε/4 < δ.

By choice, every h the comes from samples that are not in E satisfies distµ(h, c) ≤ ε, as

needed.

3.1 VC dimension

Having defined PAC learning, a natural question to ask is when a concept class is

PAC-learnable. In order to answer this question we introduce a combinatorial measure

originally defined by Vapnik and Chervonenkis (1971), thus referred to as VC dimension.

The VC dimension measures the complexity, or richness, of a concept class. Presumably,

the more complex a class is, the more difficult it is to learn this class.

The importance of the VC dimension for PAC Learning was discovered by Vapnik

and Chevonenkis and by Blumer et al., who proved that a concept class is PAC-learnable

if and only if its VC dimension is finite, and that

m = O

(
V C(C)

ε
log

1

δε

)
samples suffice. An immediate corollary is that every finite concept class is PAC-

learnable.

3.2. DOUBLE SAMPLING 23

3.2 Double sampling

In this section we describe the “double sampling” argument, which yields the sample

complexity as a function of the VC dimension.

We use the following simple lemma.

Lemma 13. Let (Ω,F , µ) and (Ω′,F ′, µ′) be countable probability spaces. Let

F1, F2, F3... ∈ F , F ′1, F ′2, F ′3... ∈ F ′

be so that µ′(F ′i) ≥ 1/2 for all i. Then

µ× µ′ (∪iFi × F ′i) ≥
1

2
µ (∪iFi) .

Proof. Let F = ∪iFi. For every ω ∈ F, let F ′(ω) = ∪i:ω∈Fi
F ′i . As there exists i s.t.

ω ∈ Fi it holds that F ′i ⊆ F ′(ω) and hence µ′(F ′(ω)) ≥ 1/2. Thus,

µ× µ′ (∪iFi × F ′i) =
∑
ω∈F

µ({ω}) · µ′(F ′(ω)) ≥
∑
ω∈F

µ(ω)/2 = µ(F)/2.

Theorem 14. Let X be a countable1 set and C ⊆ 2X be a concept class of VC-dimension

d. Let µ be a distribution over X. Let ε, δ > 0 and m an integer satisfying 2(2m+1)d(1−
ε/4)m < δ. Let c ∈ C and Y = (x1, . . . , xm) be a multiset of m independent samples from

µ. Then, the probability that there is c′ ∈ C so that c|Y = c′|Y but µ({x : c(x) 6= c′(x)}) >
ε is at most δ.

Remark 15. For a finite concept class, an upper bound of order 1
ε

ln(|C|
δ

) samples fol-

lows by Chernoff’s bound and the union bound. Roughly speaking, the double sampling

argument allows to replace ln |C| by d.

Proof. Let Y ′ = (x′1, . . . , x
′
m) be another m independent samples from µ, chosen inde-

pendently of Y . Let

H = {h ∈ C : distµ(h, c) > ε},

where

distµ(h, c) = µ({x : h(x) 6= c(x)}).

For h ∈ C, define the event

Fh = {Y : c|Y = h|Y }
1Otherwise we need to assume some measurability conditions.

24 CHAPTER 3. PAC LEARNING VC CLASSES

and let F = ∪h∈HFh. Our goal is thus to upper bound Prµm(F). For that, we also define

the independent event

F ′h = {Y ′ : distY ′(h, c) > ε/2}

where

distY ′(h, c) =
1

m
|{x′ ∈ Y ′ : h(x′) 6= c(x′)}| .

We first claim that Pr(F ′h) ≥ 1/2 for all h ∈ H. This follows from Chebyshev’s

inequality: For every i ∈ [m], let Vi be the indicator variables of the event h(x′i) 6= c(x′i)

(i.e. Vi = 1 iff h(x′i) 6= c(x′i)). The event F ′h is equivalent to V =
∑

i Vi/m > ε/2. Since

h ∈ H, we have p := E[V] > ε. Since elements of Y ′ are chosen independently, it follows

that Var(V) = p(1− p)/m. Thus, the probability of the complement of F ′h satisfies

Pr(F ′h
c
) ≤ Pr(|V − p| ≥ p− ε/2) ≤ p(1− p)

(p− ε/2)2m
<

4

εm
≤ 1/2.

We now give an upper bound on Pr(F). We note that By Lemma 13,

Pr(F) ≤ 2 Pr (∪h∈HFh × F ′h) .

Let S = Y ∪ Y ′, where the union is as multisets. Conditioned on the value of S, the

multiset Y is a uniform subset of half of the elements of S. Thus, by the union bound,

2 Pr (∪h∈HFh × F ′h) = 2ES
[
E
[
1{∃h∈H:h|Y =c|Y ,distY ′ (h,c)>ε/2}|S

]]
= 2ES

[
E
[
1{∃h′∈H|S :h′|Y =c|Y ,distY ′ (h′,c)>ε/2}|S

]]
≤ 2ES

 ∑
h′∈H|S

E
[
1{h′|Y =c|Y ,distY ′ (h′,c)>ε/2}|S

] .
Note that if distY ′(h

′, c) > ε/2 then distS(h′, c) > ε/4, and hence the probability that

we choose Y such that h′|Y = c|Y is at most (1− ε/4)m. Using Lemma 7, we get

Pr(F) ≤ 2ES

 ∑
h′∈H|S

(1− ε/4)m

 ≤ 2(2m+ 1)d(1− ε/4)m

Chapter 4

Cover numbers

Scribe: Vsevolod Rakita

In this section we go back to studying the metric properties of VC classes.

Definition 16 (Normalised Hamming Metric).

dist(c1, c2) =
|{x ∈ [n]|c1(x) 6= c2(x)}|

n
.

We specifically study the cover number of VC classes, and prove Haussler’s theorem

which is an essentially tight upper bound on the cover number. Recall that in previous

section we used the probabiitemizeic method to prove the following upper bound, which

is not tight.

Claim 17. Let ε ∈ (0, 1]. Assume that C has V C(C) = d. Assume that dist(c1, c2) ≥ ε

for all c1 6= c2 in C. Then,

|C| ≤
(

100 log(2/ε)

ε

)d
.

In this section, we prove a stronger bound:

Theorem 18 (Haussler). Let ε ∈ (0, 1]. Assume that C has V C(C) = d. Assume that

dist(c1, c2) ≥ ε for all c1 6= c2 in C. Then1,

|C| ≤
(

100

ε

)d
.

The theorem was first proved by Haussler and we present a simplification of the proof

by Chazelle. The theorem has a geometric interpretation:

1The 100 can be made smaller.

25

26 CHAPTER 4. COVER NUMBERS

Definition 19 (Packing number). We say C ′ is an ε-packing if for any dist(c1, c2) ≥ ε

for every c1 6= c2 in C ′. The ε-packing number of a set C is the cardinality of the largest

C ′ ⊆ C that is an ε-packing.

Definition 20 (Cover number). We say C ′ is an ε-cover for C if for every c ∈ C there

is c′ ∈ C ′ so that dist(c, c′) ≤ ε. The ε-cover number of a set C, denoted N(C, ε), is the

cardinality of the smallest C ′ ⊆ C that is an ε-cover for C.

A maximal ε-packing is also an ε-cover, but the converse is not true (why?).

The theorem thus states that if V C(C) = d then N(C, ε) ≤ (100/ε)d. This indicates

that in a metric sense a class of VC dimension d behaves like d-dimensional euclidean

space.

4.1 Preliminaries

Definition 21 (1-Inclusion graph). The 1-inclusion graph of C is an undirected graph

with vertex set C and edges between c, c′ iff they differ in exactly one coordinate.

These graphs have a useful property which we will use later on.

Lemma 22. If V C(C) = d, then |E| ≤ d|C|.

Proof. We will use the technique of shifting. Recall that we proved that if we transform

a set C to a set Cend by repeatedly applying shifting, then V C(Cend) ≤ V C(C), and

Cend is a subset of a Hamming ball of radius d. Hence, any vertex in the 1-inclusion

graph of Cend has at most d neighbours with a smaller number of 1’s (why?). Denote

the 1-inclusion graph of Cend by (Cend, Eend). This implies that |Eend| ≤ d|Cend| = d|C|.
It remains to prove that |E| ≤ |Eend|. Indeed, we shall show that every shifting

operation does not reduce the number of edges in the graph: Let {u, v} ∈ E be an edge,

and suppose we want to shift the x ∈ [m] coordinate. If we shifted both u and v or

neither, then the edge is still in the graph. Otherwise, assume we shifted u but not v.

Denote the shifted u by u′. Thus, 1 = u(x) = v(x), and there is a x 6= y ∈ [m] so that

u(y) 6= v(y). Since v is not shifted, v′ = (v(1), . . . , 1 − v(x), . . . , v(m)) is a vertex as

well. So, after the shifting there is an edge between u′, v′ instead of the edge between

u, v.

Lemma 23. If G = (V,E) is an undirected graph so that for all V ′ ⊆ V the induced

subgraph on V ′ contains at most d|V ′| edges, then we can direct the edges in E so that

every vertex v ∈ V has degout(v) ≤ d.

4.2. PROOF 27

Proof. For v ∈ V , denote by v1, v2, . . . , vd copies of v. For all {u, v} = e ∈ E, define

Ve = {v1, v2, . . . , vd, u1, . . . , ud}. Consider the bipartite graph G′ = (A,B,E ′), where

A = {Ve : e ∈ E}, B =
⋃
i{vi : v ∈ V }, and {Ve, vi} ∈ E ′ iff vi ∈ Ve.

For Ẽ ⊆ E, denote by U = U(Ẽ) the set of vertices that are touched by edges in Ẽ,

and by I = I(Ẽ) the edges in the subgraph induced on U in G. Thus, Ẽ ⊆ I, and

|{Ve : e ∈ Ẽ}| = |Ẽ| ≤ |I| ≤ d|U | ≤

∣∣∣∣∣∣
⋃
e∈Ẽ

Ve

∣∣∣∣∣∣ .
Hence, by Hall’s theorem, there exists a matching from A to B in G′. For every edge

{u, v} ∈ E, direct it as (u, v) iff V{u,v}’s match is in {u1, . . . , ud}.

4.2 Proof

Finally, we can prove the theorem.

Proof. We actually prove that the size of every ε-packing V in C is small.

Easy case: If m ≤ 4d/ε, then by Lemma 7,

|V | ≤ |C| ≤
(me
d

)d
≤
(

4e

ε

)d
,

as needed.

Hard case: Assume now that 4d/ε < m. Let n = d4d/εe. For I ⊆ [m] and V ⊆ C,

denote the 1-inclusion graph of V |I by GI . Define the function qI on the vertices of GI

by

qI(f) = |{g ∈ V : g|I = f}|.

Define the function wI on the edges of GI by

wI({f, g}) =
1

(1/qI(f)) + (1/qI(g))
≤ min{qI(f), qI(g)}.

Finally, define

WI =
∑
e∈EI

wI(e).

We prove the theorem based on the following properties, which we will prove sepa-

rately (in the two lemmas below):

1. Almost surely, WI ≤ d|V |.

2. EWI ≥ 2d(|V | − (en/d))d.

28 CHAPTER 4. COVER NUMBERS

These inequalities complete the proof.

Lemma 24. Almost surely, WI ≤ d|v|.

Proof. By Lemma 23, we may direct the edges of GI so that degout(u) ≤ d for all u ∈ V |I .
Thus,

WI =
∑
e∈EI

w(e) ≤
∑
e∈EI

min{qI(u), qI(v)} ≤
∑

(u,v)∈EI

qI(u) ≤ d
∑
u∈V |I

q(u) = d|V |.

Lemma 25. EWI ≥ 2d(|V | − (en/d)d).

Proof. Let I = {i1, . . . , in}. Partition the edges of GI to n disjoint subsets E1, . . . , En,

where the edges of Ej are those who connect vertices that differ in the ij’th coordinate.

Let

WI(j) =
∑
e∈Ej

wI(e).

Thus, by symmetry,

EWI = nEWI(n).

Let J = I − {in}, and for now condition on the value of J , and let in be random in

[m]− J . Partition V into |V |J | sets

Vt = {g ∈ V : t|J = g|J}.

Partition each Vt into two random sets

At = {f ∈ Vt : f(in) = 1} and Bt = Vt − At.

Let at = |At| and bt = |Bt|. For every edge e ∈ En,

wI(e) =
atbt
|Vt|

.

Thus,

E[Wn|J] =
∑
t∈V|J

1

|Vt|
E[atbt|J].

The number atbt is the number of pairs f, g ∈ Vt so that f(in) 6= g(in). Given f, g ∈ V
so that f|J , g|J ∈ Vt, the probability that f and g differ on in is at least

mε

m− n+ 1
≥ ε,

since V is an ε-packing. So every such pair contributes at least ε to atbt. Since there are

4.2. PROOF 29(|Vt|
2

)
such pairs in all,

E[atbt|J] ≥
(
|Vt|
2

)
ε.

Hence,

E[Wn|J] ≥
∑
t∈V|J

ε(|Vt| − 1)

2
=
ε(|V | − |V|J |)

2

By Lemma 7,

|V|J | ≤
(en
d

)d
.

So E[Wn|J] ≥ ε(|V | − (en/d)d)

2
.

To conclude, taking an average over J ,

EW = nE[E[Wn|J]] ≥ ε(|V | − (en/d)d)n

2
≥ 2d(|V | − (en/d)d)

30 CHAPTER 4. COVER NUMBERS

Chapter 5

Majority vote game

Scribe: Ghadeer Abu Hariri

The aim of this part is presenting Freund’s majority-vote game, and a strategy that

guarantees for one of the players a large reward. This game is underlying procedures

for boosting the accuracy of learning algorithms. We also discuss implications of the

analysis of the majority-vote game to threshold circuits.

5.1 The majority-vote game

The game is played by two players: the weighter and the chooser. The game is played

over a set X and comes with a parameter γ > 0. The game proceeds in iterations. In

each iteration i:

• The weightor picks a weight function (probability distribution) Wi on X.

• The chooser selects a set Ui ⊆ X such that Wi(Ui) ≥ 1/2 + γ and “marks” the

points of this set .

Theses iterations are repeated until the weightor decides to stop. The goal of the

weighter is to force the chooser to mark each point in the space in the majority of the

iterations. The winning set X∗ is the set of x ∈ X that were marked in more than

half of the iteration. The overall gain of the weightor is determined by a value function

(probability distribution) V on X. The value of the game is V (X∗).

Boosting. Boosting is a method to combine one or several weak learners to a strong

learner. In other words, it is about increasing the accuracy of learning procedures.

The above game is a key piece of achieving boosting. Roughly speaking, the chooser

31

32 CHAPTER 5. MAJORITY VOTE GAME

represents the weak learning algorithms that errs on 1
2

+ γ, and the weightor represents

a way to combine the choice of the weak learner to a more accurate result that is correct

on 1− ε of the space.

The strategy. We presents a strategy that lets the weightor gain 1 − ε in d 1
2γ2

ln 1
2ε
e

iterations. Some intuition for the strategy: If we were at the iteration before the last,

then we would put the weight only on the part of X for which the last mark will make

a difference.

We use the following notation. The integer k is the total number of iterations the

game is played. The set X i
r is the set of points in X that have been marked r times in

the first i iterations. The set M i
r is the subset of X i

r that is marked in iteration i. Let

qir = V (Xr)
i and xir = M i

r

V (Xi
r)

. The loss set L = X −X∗. From the intuition described

above comes the weighting factor that is defined inductively as follow:

αk−1r =

{
1 r = bk

2
c,

0 otherwise,

and for 0 ≤ i ≤ k − 2,

αir = ((1/2)− γ)αi+1
r + ((1/2) + γ)αi+1

r+1.

The performance of this weighting strategy is describe be the following theorem.

Theorem 26. Assume the weightor plays the majority-vote game for k iterations with

k so that

b k
2
c∑

j=0

(kj)((1/2) + γ)j((1/2)− γ)k−j ≤ ε (5.1)

and uses weights Wi defined by

Wi(A) =
i∑

r=0

V (A ∩X i
r)α

i
r/Zi, (5.2)

where set A ⊆ X and Zi =
∑i

r=0 V (X i
r)α

i
r is the normalization. Then the reward at the

end of the game is at least 1− ε.

In order to understand the theorem better, we mention that a simple calculation

implies that (5.1) holds whenever

k ≥ 1

2γ2
ln

1

2ε
.

5.1. THE MAJORITY-VOTE GAME 33

To prove the theorem, we inductively define a potential βir function of the set X i
r.

The potential measures the expected loss from a given state. Define

βkr =

{
0 , r > 1

2
,

1 r ≤ 1
2
,

and for i < k, define

βir =

(
1

2
− γ
)
βi+1
r +

(
1

2
+ γ

)
βi+1
r+1. (5.3)

A closed formula for βir is given by the tail of the binomial distribution:

βir =

b k
2
c−r∑
j=0

(
k − i
j

)(
1

2
+ γ

)j (
1

2
− γ
)k−j−i

.

The weight function αir is, in some sense, a derivative of the potential function:

αir = βi+1
r − βi+1

r+1. (5.4)

Another useful property is that β0
0 equals the left hand side of (5.1). The most important

property of the potential is given by the following lemma.

Lemma 27. For any strategy of the chooser,

β0
0 ≥

1∑
r=0

q1rβ
1
r ≥

2∑
r=0

q2rβ
2
r ≥ . . . ≥

k∑
r=0

qkrβ
k
r .

The lemma yields β0
0 ≥

∑k
r=0 β

k
r q

k
r . In Theorem 26 we have β0

0 ≤ ε and
∑k

r=0 β
k
r q

k
r

is one minus the value of the game, and so Theorem 26 follows from the lemma.

Proof of Lemma 27. According to the definitions above, for 1 ≤ r ≤ i,

qr+1
r = qir−1x

i
r−1 + qir(1− xir)

for r = 0,

qi+1
0 = qi0(1− xi0)

and for r = i+ 1,

qi+1
i+1 = qiix

i
i.

Thus,

34 CHAPTER 5. MAJORITY VOTE GAME

∑i+1
r=0 q

i+1
r βi+1

r = qi0(1− xi0)βi+1
0 +

∑i
r=1

(
qir−1x

i
r−1 + qir(1− xir)

)
βi+1
r + qiix

i
iβ
i+1
i+1 .

Rearranging we get

i+1∑
r=0

qi+1
r βi+1

r =
i∑

r=0

qir
(
1− xir)βi+1

r + xirβ
i+1
r+1

)
(5.5)

=
i∑

r=0

qirβ
i+1
r +

i∑
r=0

qirx
i
r

(
βi+1
r+1 − βi+1

r

)
. (5.6)

The weight restriction implies

i∑
r=0

W (M i
r) ≥

1

2
+ γ.

By definition of the weight function,

1

Zi

i∑
r=0

V (M i
r)α

i
r ≥

1

2
+ γ.

and ∑i
r=0 q

i
rx

i
rα

i
r

Σi
r=0q

i
rα

i
r

≥ 1

2
+ γ.

By (5.4), and since βi+1
r > βi+1

r+1,

i∑
r=0

qirx
i
r(β

i+1
r+1 − βi+1

r) ≤
(

1

2
+ γ

) i∑
r=0

qir(β
i+1
r+1 − βi+1

r).

Hence,

i+1∑
r=0

qi+1
r βi+1

r ≤
i∑

r=0

qirβ
i+1
r +

(
1

2
+ γ

) i∑
r=0

qir(β
i+1
r+1 − βi+1

r)

=
i∑

r=0

qir

((
1

2
+ γ

)
βi+1
r+1 +

(
1

2
− γ
)
βi+1
r

)

=
i∑

r=0

qirβ
i
r,

5.2. THE POWER OF MAJORITY GATES 35

where the last equality uses (5.3). Finally,

i+1∑
r=0

qi+1
r βi+1

r ≤
i∑

r=0

qirβ
i
r.

5.2 The power of majority gates

The analysis of the majority-vote game can be used to prove an interesting result regard-

ing the representation of boolean function as a majority over other boolean functions

f : {−1, 1}n → {−1, 1}. Let H be a set of boolean functions. Intuitively, we show that

if for any distribution over the domain {−1, 1}n ,there is some function h ∈ H such that

f and h are correlated, then f can be represented as a majority over a small number of

functions in H.

Let p be a distribution on {−1, 1}n. The correlation between f and H with respect

to p is

corp(f,H) = max
h∈H

Ex∼p[f(x)h(x)].

The distribution-free correlation is

cor(f,H) = min
p
corp(f,H).

The majority function is defined as follows

MAJ(x1, . . . , xk) = sign(
k∑
i=1

xi)

where

sign(x) =

{
1 , x ≥ 0

−1 , x < 0.

Theorem 28. Let f be a boolean function over {−1, 1}n and H be a set of functions

over the same domain. If

k ≥ 2 ln(2)
n

(cor(f,H))2

then for every x,

f(x) = MAJ(h1(x), . . . , hk(x))

for some h1, . . . , hk ∈ H.

The proof of is based on the analysis majority-vote game. This application is dis-

36 CHAPTER 5. MAJORITY VOTE GAME

covered by Schapire. Goldmann, Hastad and Razborov proved a variant of this theorem

using von Neumann’s minimax theorem from game theory. Their proof does not show

how one can find the functions h1, . . . , hk. Shcapire’s proof is more constructive.

Chapter 6

Compression schemes for Dudley

classes

Scribe: Ori Sberlo

6.1 Compression schemes

We define a certain type of compression called unlabeled compression and show that

there always exists such compression for the dual class of halfspaces. We extend this

result to a wider collection of concept classes called Dudley classes, and show they are

strongly related to a the notion of sign rank.

Definition 29 (Unlabeled compression scheme). A size-d unlabeled compression scheme

for a class C ⊆P(X) = {0, 1}X is a mapping

H : P(X)≤d → {0, 1}X

such that for any finite set of labeled examples S±, there exist some A ∈P(X)≤d such

that,

A ⊆ S and S± v H(A).

Here P(X)≤d are all subsets of X of size at most d, a set of labelled examples S± is a

pair consisting of a set S ⊆ X and a map from S to {+,−}, and f v g means that g

extends f .

Remarks:

1. H(A) is not necessarily a concept in C.

37

38 CHAPTER 6. COMPRESSION SCHEMES FOR DUDLEY CLASSES

2. A is just a set; it does not hold the labels of examples S±.

3. The compression map is implicitly defined, since we demand that every sample

has a reconstruction from a compressed sample.

Example: Let C be the concept class of all intervals in R. Define the reconstruction

map by

H(g) =


[x, y] g = {x, y} x < y,

[x, x] g = {x},
φ g = φ.

The compression for sample S± is obtained by taking the left most positive sample and

rightmost positive sample (take the singleton in case of one positive example, or the

empty set if there are no positive samples).

Compactness: The following lemma shows that to prove existence of a compression

scheme for a given class it suffices to consider finite subclasses of it [Ben-David and

Litman].

Lemma 30. If every finite subclass of C admits an unlabeled size-d compression scheme

then so does C.

The proof uses the compactness theorem for predicate logic of first-order.

6.2 Halfspaces

Every line partition the plane R2 to two parts. A halfspace is one of these parts. More

generally, every hyperplane partitions Rn to two parts, and a halfspace is one of these

parts. A halfspace h may be specified by a linear inequality, derived from the linear

equation that specifies the defining hyperplane:

h = {x ∈ Rn :
∑

aixi + an+1 ≥ 0}.

It is uniquely determined by a = (a1, . . . , an+1) ∈ Rn+1. This a corresponds to the

hyperplane that is the boundary of h.

Definition 31 (Dual of halfspaces). Let (HSn)D denote the concept class {fr : Rn+1 →
{0, 1} : r ∈ Rn} where fr is define by

fr(a) =

{
1
∑n

i=1 riai + an+1 ≥ 0,

0
∑n

i=1 riai + an+1 < 0.

6.3. A COMPRESSION SCHEME 39

6.3 A compression scheme

Theorem 32 (Ben-David and Litman). (HSn)D admits unlabeled compression of size

n.

We start with an intuitive description of the compression. Using compactness, we

can focus on a finite subclass C of (HSn)D. A sample from C is a finite sequence of

halfspaces labeled according to the way some target point classifies them. Such a sample

induces a ’cell’ in Rn, where every point in the cell is consistent with all samples. If we

manage to “remember” a point in the cell then we can reconstruct our samples. The

idea is to fix a point t ∈ Rn, and find the closest point from t to the cell’s boundary.

This intuitively defines a map mt : {cells} → {points} which depends on t. We will

show that given a generic t, the point acquired by mt can be described at most n many

halfspaces from the given sample. These halfspaces define the compression.

We use the following terminology:

• j-dimensional co-set of Rn is of the form y + W where y ∈ Rn and W is a linear

j-dimensional subspace of Rn.

• A hyper-plane is n− 1 co-set.

• A half space is a set of the form {αy : α ∈ R, α ≥ β}+ q where y ∈ Rn and q is a

hyper-plane.

• Denote by B(s) the boundary of s and B(S) = {B(s) : s ∈ S}.

Definition 33. Let t be a point, and let g a closed, convex and non-empty subset of Rn.

We denote by y = mt(g) be the unique point so that d(t, y) = min{d(t, x) : x ∈ g}.

Definition 34. Let P be a set of hyper-planes. We say that P is regular if for any

P ′ ⊂ P

1. If |P ′| ≤ n then ∩P ′ is an (n− |P ′|) dimensional plane.

2. If |P ′| > n then ∩P ′ = ∅.

Definition 35. Let P be a regular set of hyper-planes. We say t ∈ Rn is a separating

point if for any P ′, P ′′ distinct subsets of P of cardinality at most n,

mt(∩P ′) 6= mt(∩P ′′).

Lemma 36. Let q′ ⊂ q be different co-sets then Tq′,q = {t : mt(q) ∈ q′} is a co-set of

dimension less than n.

40 CHAPTER 6. COMPRESSION SCHEMES FOR DUDLEY CLASSES

Sketch. After a shift, Tq′,q is closed under sums and products by scalars. Points t in

q − q′ satisfy mt(q) = t 6∈ T .

Lemma 37. If P is a finite regular set of hyper-planes then there exists a point that

separates P .

Proof. We shall show that a generic point is good. For two distinct sets P ′, P ′′ of

hyperplanes in P , Lemma 36 applied to q = ∩P ′ and q′ = q ∩ (∩P ′′) implies that the

set S(P ′, P ′′) = Tq′,q is a co-set of dimension less than n. Since Rn can not be covered

by a finite union of co-sets of dimension less than n, there is a point t that is outside⋃
P ′,P ′′ S(P ′, P ′′). Specifically, t separates P .

Definition 38. Given a halfspace g the adjacent halfspace is defined to be the complement

halfspace with the same boundary. Denote by g(0) the adjacent halfspace of g, and by g(1)

the halfspace itself. Given a point y, define gy the halfspace with the same boundary as

g that contains y.

Definition 39. For point y and a set of halfspaces G, define G(y) = {g ∈ G : y ∈ g}.
Based on y and a separating point t for P , define the partial function Γy from the set of

hyperplanes to the set of halfspaces:

Γy(g) =


gy y 6∈ g,
(gx)

(0) y ∈ g, x = mt(∩(G(y) − {g})),
undefined otherwise.

Definition 40. A cell is a non-empty subset of Rn which is the intersection of finitely

many halfspaces. A cell of P is a cell of the form ∩S where B(S) ⊂ P and S has no

adjacent hyperplanes.

Proposition 41. Let q be a cell of P with q = ∩S and B(S) ⊂ P , and let y = mt(q)

Then,

1. mt(∩P (y)) = y.

2. P (y) ⊂ B(S).

3. s = Γy(B(s)) for all s ∈ S.

Proof.

1. Assume towards a contradiction that mt(∩P (y)) = z 6= y. So, d(t, z) < d(t, y) since

y ∈ ∩P (y). Since ∩P (y) is convex, it contains the interval [y, z]. On the one hand,

[y, z]∩ q = [y, y], since along [y, z] getting closer to z means getting closer to t. On

the other hand, for any s ∈ S if y ∈ B(s) then [y, z] ∩ s = [y, z], and if y 6∈ B(s)

then [y, z] ∩ s = [y, y′] 6= [y, y]. Therefore [y, z] ∩ q 6= [y, y], a contradiction.

6.3. A COMPRESSION SCHEME 41

2. Similarly to as above we may conclude that mt(∩(P (y) ∩ B(S))) = y. Since t

separates P and by the above,it holds that P (y) = P (y) ∩ B(S). This finishes the

second claim.

3. Let s ∈ S. If y ∈ B(s) then Γy(B(s)) = (B(s))y. This and y ∈ s implies

Γy(B(s)) = s. Now assume that y ∈ B(s). By the above, Γy(B(s)) = (h(B(s), x))(0)

with x = mt(∩(P (y) − {B(s)})). Consider the line interval [y, x]. Since d(t, x) <

d(t, y), we know [y, x] ∩ q = [y, y]. On the other hand, for any s′ ∈ S − {s}, we

have [y, x] ∩ s′ 6= [y, y]. Hence [y, x] ∩ s = [y, y]. Therefore x 6∈ s which implies

Γy(B(s)) = ((B(s))x)
(0) = s.

Definition 42. The concept class C is said to be regular if the following holds. Let S

be the set of cells defined by hyperplanes in C.

• Rn, ∅ 6∈ S.

• S has no adjacent halfspaces.

• B(S) is regular.

Lemma 43. For every finite set of lines L, finite set of point P , and a halfspace s, there

exists a halfspace s′ satisfying:

1. For every ` ∈ L, the intersection B(s′) ∩ ` is singleton.

2. s′ ∩ P = s ∩ P .

3. P ∩B(s′) = ∅.

Sketch. s′ is obtained from s by a small rotation and shift.

Lemma 44. Let C be a finite subclass of (HSn)D then there is a regular subclass of

(HSn)D that contains it.

Proof. Apply lemma 43 and induction on |S|.

Proof of Theorem 32. By Lemma 30, we may consider only finite subclasses of

(HSn)D. Let C be a finite subclass of (HSn)D. By Lemma 44 we may assume that C

is regular. Set P = B(S) and let t and Γ as we defined. Let S ′ be samples from C and

f : S ′ → {0, 1} denote its labeling. The set S ′′ = {sf(s) : s ∈ S ′} ⊂ S ′ induces the cell

q = ∩S ′′ of P . The cell is not empty since there must be a point consistent with the

samples.

Let y = mt(q). By proposition 41 Γy reconstructs the sample f . That is, Γy outputs

a point consistent with f , and y is determined from S∗ = (B(S))(y) which is of size at

most n due to regularity.

42 CHAPTER 6. COMPRESSION SCHEMES FOR DUDLEY CLASSES

6.4 Dudley classes

Here we define a more abstract collection of concept classes for which the compression

we discussed above works. These are concept classes that may be embedded in (HSn)D.

Definition 45. Let F be a collection of real-valued functions over some domain X

which is vector space over the reals. Let h : X → R. A Dudley class is a class C = {yf :

f ∈ F} with

yf (x) =

{
1 f(x) + h(x) ≥ 0,

0 f(x) + h(x) < 0.

Theorem 46 (Dudley). The VC dimension of such a class is the linear dimension of

the vector space F .

Definition 47. Let C,C ′ be concept classes over domains X,X ′. An embedding from

C to C ′ is a pair of functions π : X → X ′, τ : C → C ′ so that for all c ∈ C and x ∈ X,

c(x) = 1⇔ (τ(c))(π(x)) = 1.

We denote this by C �emb C ′.

Proposition 48. Let C,C ′ be concept classes. If C ′ has a compression with size k and

C �emb C ′ then C also admits a compression with size k.

Proof. Define the reconstruction function H(g)(x) = H ′(π(g))(π(x)) where H ′ compres-

sion for C ′ and follow the definition of unlabeled compression.

Proposition 49. Let D be a Dudley class with dimension k then D �emb (HSn)D.

Proof. Follows from definitions.

The results above imply that

Theorem 50. If C is a Dudley class. Then C admits an unlabeled compression of size

V C(C).

6.4.1 Sign rank

In light of Theorem 50 we can ask ourselves what is the minimum dimension k for which

concept class C with domain X can be embedded in a Dudley class. That is, what is

the minimal k for which there exists a vector space of functions F = {f : X → R} of

dimension k so that C can be embedded in the Dudley class obtained by F .

6.4. DUDLEY CLASSES 43

Let C = {ci}`i=1 be a finite concept class over X = {xi}ni=1. We are looking for

F = {f : X → R} and functions {gi}li=1 ⊆ F so that

sign(gi(xj))

{
1 ci(xj) = 1,

−1 ci(xj) = 0.

It is convenient to consider sign matrices instead of boolean one (just replace the 0’s

by -1’s). The equality above is simply sign(gi(xj)) = ci(xj). Suppose {fi}di=1 is basis

for F so that gi =
∑
αi,jfj. Consider the matrices Ai,j = fj(xi) and Bi,j = αi,j.

Thus Mi,j = (AB)i,j = gi(xj). Conversely, given a factorization Mi,j = (AB)i,j so that

sign(Mi,j) = C, we can obtain F and {gi}li=1 as required.

Definition 51. The sign rank of matrix S is

sign− rank(S) = min{rank(M) : sign(Mi,j) = Si,j}.

The above reasoning shows that the sign-rank captures the minimal d so that concept

class C can be realized as Dudley class with dimension k. The following shows that most

finite classes have high sign rank, and so their Dudley dimension is large as well.

Proposition 52. The number of N ×N sign matrices of sign rank at most r does not

exceed 2O(rN logN).

The proof uses real algebraic geometry. Let P = (P1, . . . , Pm) be a vector of real

polynomials in ` variables. Define the semi-variety

V (P) = {x ∈ R` : ∀i ∈ [`] Pi(x) 6= 0}.

The sign-pattern of P at x

SP (x) = (sign(P1(x)), . . . , sign(Pn(x))).

Let N(P) be the number of all possible sign-patterns for P . Notice that N(P) is bounded

by the number of connected components of V (P).

Theorem 53 (Warren). Let P1, . . . , Pm be m real polynomials, each in ` variables and

degree at most k. If m ≥ ` then the number of connected components of V (P) is at most

(4ekm/`)`.

Proposition 52 follows from that the number of sign-patterns possible for real N ×N
with rank at most r is bounded by 2O(rN logN). Indeed, a matrix M ∈ RN×N has degree

at most r iff it can be factorized into two matrices A,B of sizes N × r, r×N . Hence the

44 CHAPTER 6. COMPRESSION SCHEMES FOR DUDLEY CLASSES

entries of M can be thought as polynomials in 2Nr variables and degree 2. Theorem 53

implies N(P) ≤ (8eN2/(2Nr))2Nr = 2O(rN logN).

Corollary 54. For sufficiently large N there exist N × N matrices with sign rank at

least N/ logN .

Chapter 7

Sample compression schemes

Scribe: Vered Cohen

7.1 Definition

Let C ⊆ {0, 1}X be a concept class. For c ∈ C and Y ⊆ X, denote by Y ±,c the element

of Y together with the labeling according to c.

A sample compression scheme of size at most d for a concept class C ⊆ {0, 1}X

consists of a compression function κ and a reconstruction function ρ. The compression

function κ maps every finite sample set Y ±,c to a compression set; a subset of at most d

of the labeled samples. The reconstruction function ρ maps every possible compression

set to hypothesis h ∈ {0, 1}X such that for all finite Y ⊆ X and c ∈ C, if h = ρ (κ (Y ±,c))

then h(y) = c(y) for all y ∈ Y . The hypothesis h is not required to be in C.

Examples:

1. Axis parallel rectangles in R2. For every sample set of finite size m, save at

most 4 points: leftmost, rightmost top and bottom positive samples from our set.

The reconstruction function outputs as an hypothesis the smallest rectangle that

includes all the points in the compression set.

2. n intervals on a line. Save at most 2n points x1, x2, . . .: the first positive sample, the

first negative example after that, positive after that and so on. The reconstruction

function maps the compressed set to the hypothesis that consists of the intervals

[x1, x2), [x3, x4), . . .

45

46 CHAPTER 7. SAMPLE COMPRESSION SCHEMES

It is possible to extend the definition of a sample compression scheme by allowing

the compression map to save some extra amount of information. Let Q be a finite set.

An extended compression scheme of size d with side information Q for C consists of a

compression function κ and a reconstruction function ρ such that the following holds.

The compression map κ maps Y ±,c to a pair (Y ′, q) where Y ′ is a subsample of Y ±,c of

size at most d and q ∈ Q. The reconstruction map ρ maps pairs of the form (Y ′, q) to

h. The same correctness should hold.

Example: A shape in R2 that is either a triangle or an axis-parallel rectangle. The

compression function tries to find the “correct” shape: First, try to match with a triangle

and then with a rectangle. The side information q ∈ {1, 2} encodes which of the 2 options

occurred.

7.2 Learning using a sample compression scheme

Online versus batch learning. An online learning algorithm updates its hypothesis

after every sample it receives, whereas a batch-learning algorithm studies a whole ‘batch’

of examples, after which it produces its hypothesis.

An example for an online learning algorithm. The Halving algorithm keeps track

of all concepts consistent with all past examples, and for each new example it predicts

the value as the majority of the concepts consistent so far. It then updates the consistent

concepts set. This algorithm makes at most lg |C|mistakes. This construction also yields

a a sample compression scheme of size at most ln |C| for every finite class C.

Batch learning and compression schemes. The batch-learning algorithm corre-

sponding to a sample compression scheme is the straightforward application of it; given

a set of examples Y ±,c, it produces the hypothesis h = ρ (κ (Y ±,c)).

7.2.1 Connection to PAC learning

The following theorem shows that sample compression schemes give PAC learning algo-

rithms.

Theorem 55 (Littlestone and Warmuth, 1986). Let µ be any probability distribution

on a domain X. Let C ⊆ {0, 1}X andc ∈ C. Let ρ, κ be a compression scheme for C of

size d. Let Y = (x1, x2.., xm) be a set of examples drawn independently according to µ.

7.2. LEARNING USING A SAMPLE COMPRESSION SCHEME 47

Define h = ρ (κ (Y ±,c)). Then, for every m ≥ d and ε > 0,

Pµm (µ ({x : h (x) 6= c (x)}) > ε) ≤
d∑
i=0

(
m

i

)
(1− ε)m−i .

A similar bound holds even when there is side information Q. The probability of

error in this case is at most

Pµm (µ ({x : h (x) 6= c (x)}) > ε) ≤ |Q|
d∑
i=0

(
m

i

)
(1− ε)m−i .

Proof. Let T be a subset of [m]. let BT denote all sample sets Y = {x1, . . . , xm} such

that the hypothesis hT = ρ (Y ±,c) is consistent with the given examples, that is, for

every x ∈ Y ,

hT (x) = c (x) .

Let UT denote all samples sets Y such that

µ ({x : hT (x) 6= c (x)}) > ε.

Now, the probability to draw a sample that is in BT ∩ UT is at most (1− ε)m−|T |.
Indeed, if Y is in BT ∩UT , then the examples (xi : i ∈ [m]−T) are both consistent with

hT that is ε-far from c and consistent with c.

Finally, the probability that the random set Y has a compression set of size at most

d and the error is more than ε is at most
∑

T :|T |≤d µ
m (BT ∩ UT), which complete the

proof.

The following lemma helps to understand for which values of m the theorem above

is meaningful.

Lemma 56. Let 0 ≤ ε, δ ≤ 1 and let 0 < β < 1. If

m ≥ 1

1− β

(
1

ε
ln

1

δ
+ d+

d

ε
ln

1

βε

)
then

d∑
i=0

(
m

i

)
(1− ε)m−i ≤ δ.

Sketch. Can be deduced from that for all α > 0, we have − lnα − 1 + αm ≥ lnm, and

from that
∑d

i=0

(
m
i

)
≤ (me/d)d.

48 CHAPTER 7. SAMPLE COMPRESSION SCHEMES

7.3 Compression schemes for maximum classes

In this section, we describe an optimal construction of a sample compression scheme for

maximum classes.

Definition 57 (Maximum concept class). A concept class C ⊂ {0, 1}X of VC dimension

d is called maximum if it is extremal for Sauer’s lemma; that is, for every finite subset

Y ⊂ X, it holds that

|C|Y | = Φd (|Y |) ,

where

Φd (m) =


∑d

i=0

(
m

i

)
m ≥ d,

2m m < d.

Example: C =


1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

 is maximum with V C (C) = 1.

The construction of sample compression scheme for maximum classes is based on

several strong structural results for them that we now describe.

We use the following notation. The x-restriction of C is the concept class

C − x = C|X−{x}.

The x-reduction of C is the concept class

C{x} = {c ∈ C − x : c ∪ (x, 0) , c ∪ (x, 1) ∈ C} .

Theorem 58 (Welzl 1987). A concept class C ⊂ {0, 1}X over a finite domain X such

that V C (C) = d is maximum iff |C| = Φd (|X|).

Sketch. One direction is immediate from definition, and the other direction follows by

induction using binomial identities.

Corollary 59 (Welzl 1987). For a maximum concept class C ⊂ {0, 1}X over a finite

domain X, and for all x ∈ X:

1. C{x} is a maximum class of V C dimension d− 1.

2. If |X − {x}| ≥ d, then C − x is a maximum class of V C dimension d.

7.3. COMPRESSION SCHEMES FOR MAXIMUM CLASSES 49

For A = {x1, .., xk} ⊂ X, define the A-reduction of C is as

CA = (((C{x1}){x2})...){xk}.

CA is well-defined, because (C{x1}){x2} = (C{x2}){x1}. A labeling A± of A is a map from

A to ± For a labeled set A± and c ∈ C|X−A, let the extension of c with A± be the

concept cA± ∈ {0, 1}X that is obtained by extending c by A±. We can also observe that

CA consists of all concepts c in C|X−A such that for any labeling of A, the extension of

c to X is in C.

Corollary 60 (Welzl 1987). If C ⊂ 2X is a maximum class with V C (C) = d over a

finite domain X, and A ⊂ X of size |A| = d, then there is only one concept in CA.

For A of size d, we say that A± is a compression set for the concept c ∈ C if c is the

extension of the unique concept in CA with A±.

Lemma 61. Let C be a maximum class such that V C (C) = d over a finite domain X,

and let A ⊆ Y ⊆ X such that |A| = d. Let A± be a compression set of c ∈ C|Y . Let c′

be the extension of the unique concept in CA using A±. Then, c = c′|Y .

Proof. Holds since (C|Y)A = (CA)|Y−A. The left set contains c|Y−A and the right set

c′|Y−A.

The lemma above together with the following theorem provide a compression scheme

for maximum classes. The compression map maps c to a compression set of c, and the

reconstruction map extends the compression.

Theorem 62. Let C be a maximum class such that V C (C) = d, over a finite domain

X of size |X| = m. Assume m ≥ d. Then, for every c ∈ C, there is a compression set

A± of size d.

Before proving the theorem, we describe the compression scheme. The compression

function maps Y ±,c to its compression set in C|Y . The reconstruction function maps A±

of size d to the unique concept in CA with A± as extension.

Proof. The proof is by induction.

Base case: If m = d then A± = c. If d = 0 then use the empty set as a compression.

Induction step: Let c ∈ C − xm Consider two different cases.

50 CHAPTER 7. SAMPLE COMPRESSION SCHEMES

Case 1: c /∈ C{xm}, so only one of c∪ (xm, 1) and c∪ (xm, 0) is in C. We know that

C − xm is a maximum class of dimension d, since m > d. By induction, c is represented

by A± of size d with A ⊂ X−{xm}. The extension of the unique concept in (C|X−{xm})A
by A is c and c can be extended in a unique way to all of X.

Case 2: c ∈ C{xm}. We know that C{xm} is a maximum class of dimension d − 1.

By the induction hypothesis, there is a compression set B± of size d − 1 so that B ⊆
X − {xm}. Define

A± = B± ∪ (xm, c(xm)) .

We know that A± represents a single concept cA± in C. We only need to show that

cA±|X−{xm} = cB± . Let assume, towards a contradiction, that it is not so. Then, there

exists x ∈ X − ({xm} ∪ B) such that cA± (x) 6= cB± (x). There are 2d concepts in C

where c (x) = cA± (x). There are 2d−1concepts in C{xm} where c (x) = cB± (x). By the

definition of C{xm}, there are 2d concepts in C where c (x) = cB± (x). So we have a

shattered set of size d+ 1 in C, a contradiction.

Chapter 8

Population recovery

Scribe: Igor Khmelnitsky

In this chapter we consider two learning problems: the population recovery prob-

lem (PRP) and the distribution recovery problem (DRP). We present a solution using

PID (partial identification) graphs. These are reconstruction problem investigated by

Wigderson and Yehudayoff. Our to reconstruct a set of items or a distribution on them

using distorted samples.

Let us start by giving 2 examples of the PRP for lossy and noisy sample1:

Example 63 (Recovery from lossy samples). Imagine that you are a paleontologist,

who wishes to determine the population of dinosaurs that roamed the Earth before the

hypothetical meteor made them extinct. Typical observations of dinosaurs consist of

finding a few teeth of one here, a tailbone of another there, perhaps with some more

luck a skull and several vertebrae of a third, and rarely a near complete skeleton of a

fourth. Each observation belongs to one of several species. Using these fragments, you

are supposed to figure out the population of dinosaurs, namely, a complete description

of (say) the bone skeleton of each species, and the fraction that each species occupied

in the entire dinosaur population. Even assuming that our probability of finding the

remains of a particular species, e.g. Brontosaurus, is the same as its fraction in the

population, the problem is clear: while complete features identify the species, fragments

may be common to several. Even with knowledge of the complete description of each type

(which we a-prior do not have), it is not clear how to determine the distribution from

such partial descriptions. A modern-day version of this problem is analyzing the partial

Net ix matrix, where species are user types, features are movies, and each user ranked

only relatively few movies.

1The text in examples is copied verbatim from paper of Wigderson-Yehudayoff.

51

52 CHAPTER 8. POPULATION RECOVERY

Example 64 (Recovery from noisy samples). Imagine you are a social scientist who

wants to discover behavioral traits of people and their correlations. You devise a ques-

tionnaire where each yes/no question corresponds to a trait. You then obtain a random

sample of subjects to fill the questionnaire. Many of the traits, however, are private,

so most people are unwilling to answer such questions truthfully, fearing embarrassment

or social consequences if these are discovered.To put your subjects at ease you propose

that instead of filling the questionnaire truthfully, they fill it randomly: as follows: to

each question, they flip the true answer with probability 0.49, independently of all others.

This surveying method (typically applied when there is one question of interest) is known

as “randomized response” and was initiated by Warner. Is privacy achieved? Can one

recover the original truthful information about the original sequences of traits and their

distribution in the population? Observe that typical samples look very different than the

sequences generating them. Indeed, can one synthesize sensitive databases for privacy by

publishing very noisy versions of their records?

Both of this examples illustrate the issues we want to tackle, and hopefully its im-

portance.

Set-up. Fix an alphabet Σ so that ? 6∈ Σ, parameters n, k ∈ N, accuracy parameter

α > 0 , error margin δ > 0, a vector population V ⊆ Σn which is of size |V | ≤ k and a

probability distribution π on V.

Definition 65 (Lossy sample). Let 0 < µ < 1 then a µ-lossy sample v′ is generated

randomly in the following way. First pick v ∈ V randomly using the distribution π.

Then, independently at random for each coordinate vi of v replace it with “?” with

probability 1−µ and left untouched with the probability µ. The result is v′. For example:

v =


1

0

1

1

 →
loss

v′ =


1

?

1

?


Definition 66 (Noisy sample). Let −1 < ν < 1 and for simplicity assume Σ = {0, 1}. A

ν ′-noisy sample is generated as follows. First pick v ∈ V randomly using the distribution

π. Then, independently at random each coordinate vi of v is filliped with the probability

(1− ν) /2, and left untouched with the probability (1 + ν) /2. The result is v′. For

example:

8.1. PARTIAL IDS 53

v =


1

0

1

1

 →
noise

v′ =


1

1

0

1


Now let us formally define the problem we are trying to solve.

Definition 67 (Population recovery problem (PRP)). Approximately reconstruct V and

π up to the accuracy parameter α with probability δ for error. Namely, given an inde-

pendent lossy or noisy samples, find a set V ′ which contains every element v ∈ V for

which π(v) > α and a distribution π′ on V ′ so that that for each v ∈ V ′ we have

|π(v)− π(v′)| < α. We want to find such V ′, π′ with the probability at least 1− δ.

In this presentation we focus on a simpler problem the distribution recovery problem.

Definition 68 (Distribution recovery problem (DRP)). Same as PRP, but we know the

vector set V, so the only thing left to reconstruct is π.

The solution of DRP will already contains all ideas needed to solve PRP. To solve

DRP, we shall introduce the notion of Partial IDs (PIDs) and describe a useful construc-

tion of PIDs. Later on, we shall hint how the DRP problem is solved using PIDs.

8.1 Partial IDs

When trying to solve the PRP problem we notice that we do not always need all the

information about a certain item to recognize it, most of the time a partial information

is enough. For example in a set of family members we do not always need all the info

about a certain member (ID number, name, age, ...) to identify her, and usually just

the name is enough. Unfortunately, sometime different people may look the same, when

only a partial information is given. In our family example a father and his child can

both be named George. Lets us define a PID in our case:

Definition 69 (Partial ID (PID)). Let V ⊆ Σn . For v ∈ V let S ⊆ [n]. We think of S

as a partial ID for v. The restriction of v to S is denoted by v[S]. An impostor u ∈ V
of v is a vector so that u[S] = v[S]. Denote by I(v;S) the set of all imposters of v with

respect to S.

A natural way to record the imposter relations is in a form of a directed graph. We

shall think of the items with their PID as vertices, where each v points on all of his

imposters.

54 CHAPTER 8. POPULATION RECOVERY

Definition 70 (PID graph). A PID graph G is defined for any set of vectors V ⊆ Σn

and any set of PIDs S = {Sv ⊆ [n] : v ∈ V }. The vertices of G are the elements of V .

Directed edges go from every vertex v to every importer u of v, namely v u if u 6= v

and u[Sv] = v[Sv].

The following are few properties of the PID graph which will be of use for us later

on:

Definition 71. Basic properties for PID graph G:

a. For every v ∈ V , the cost of v is defined inductively as follows. If v is a sink in G

then cost(v) = 1. For all other v:

cost(v) = 1 +
∑

u∈I(v):u6=v

cost(u).

The cost of the entire graph is defined to be

cost(G) = max {cost(v) : v ∈ V } .

b. The depth of G is defined to be the longest directed path in G.

c. The width of G is defined to be

width(G) = max {|Sv| : v ∈ V } .

We would like to minimize all of three parameter, as they will all effect the efficiency

of our algorithms. We shall see that we can create our PID graph in such a way that

we keep width(G) ≤ log(|V |) ,depth(G) < log(|V |), and by using the following claim we

get that cost(G) ≤ |V |log(|V |)).

Claim 72. If a PID graph G is acyclic then cost(G) ≤ |V |depth(G).

Now we explain how to construct an efficient PID graph. We start by describing the

following recursive algorithm which we will use to extend a given PID S for a vector

v. This algorithm greedily shrinks the number of imposters by a factor of two until it

cannot do it anymore. (In the algorithm, the set of vectors V is fixed.)

Algorithm: Extend(v, S)

Input: A vector v ∈ V and a set S ⊆ [n].

8.1. PARTIAL IDS 55

Recursion base: Let J be the set of i in [n]\S so that

|I (v, S ∪ {i}) | ≤ |I (v, S) |/2.

If J is empty, output.

Extend(v, S) = S.

Recursive step: Otherwise let i = min J , and compute

Extend(v, S) = Extend(v, S ∪ {i}).

The following claim summarizes the important properties of the Extend algorithm.

Claim 73 (Properties of extension). For every v ∈ V and S ⊆ [n], if T = Extend(v, S)

then:

• S ⊆ T .

• |I(v, T)| ≤ |I(v, S)| · 2|S|−|T |.

• T is maximal for v that is Extend(v, T) = T .

• If u 6= v and u ∈ I(v, T) , then T is not maximal for u.

Proof. Verification is an exercise.

One may think that choosing a PID for v by Sv = Extend(v, ∅) would be enough to

get our desired object, but unfortunately this is not the case. In particular, although

we do make sure that width(G) ≤ log(|V |), we cannot guarantee that the depth of the

graph is logarithmic, see example 77 below.

What we can do is ensure that for all u 6= v so that u ∈ I(v, Sv), we have |Su| > |Sv|,
and by doing so get a graph of logarithmic depth as well:

Algorithm: PID construction

Input: A set V ⊆ Σn

Initialize: For every v ∈ V set Sv = Extend(v, ∅).

Iterate: While there exist v and u 6= v with u ∈ I(v, Sv) and |Su| ≤ |Sv| set Su =

Extend(u, Sv).

Output: The set of final PIDs Sv and the graph G they define.

56 CHAPTER 8. POPULATION RECOVERY

Before proving that this algorithm does what we want it to do, let us give an example

to see it in action:

Example 74. Set our Σ = {0, 1}5 and

V =

1 2 3 4 5

v1 : 1 1 1 1 0

v2 : 0 0 1 0 1

v3 : 1 1 1 1 1

v4 : 1 0 0 1 0

v5 : 1 0 1 0 0

v6 : 1 1 1 0 0

In the “initialize” phase we get the sub set of coordinates for each v ∈ V :

Sv1 = {2} ;Sv2 = {1} ;Sv3 = {2, 5} ;Sv4 = {2, 3} ;Sv5 = {2} ;Sv6 = {2, 4} .

With the imposters:

I(v1, Sv1) = {v1, v3, v6} ; I(v2, Sv2) = {v2} ; I(v3, Sv3) = {v3}

I(v4, Sv4) = {v4} ; I(v5, Sv5) = {v2, v4, v5} ; I(v6, Sv6) = {v6} .

Now we got to the iteration stage and it is easy to see that only for v5 we have v2 ∈
I(v5, Sv5) and |Sv2| ≤ |Sv5|. Therefore the “iteration” stage is not empty, so we set

Sv2 = Extend(v2, Sv5) = {2, 1}.

And now since we have no other v which satisfies the condition in the iteration stage we

are finished and we get the graph G:

With the properties:

Cost(G) = 3;Depth(G) = 2;Width(G) = 2.

Now let us prove the following claim which summarizes the properties maintained

by the algorithm:

Claim 75 (Properties of the PID graph). .

8.1. PARTIAL IDS 57

a. If u 6= v in V were chosen in some iteration then

|Extend(u, Sv)| > |Sv| ≥ |Su|.

b. The total length of PIDs Σv∈V |Sv| strictly increases at every iteration.

c. For every v ∈ V and every Sv, which is obtained while the algorithm runs, 1 ≤
|I(v, Sv)| ≤ 2−|Sv | · |V |. Specifically, the size of Sv never exceeds log |V |.

d. The total length of PIDs never exceeds |V | log |V | .

e. The algorithm halts after at most |V | log |V | iterations.

f. Let G be the PID graph the algorithm computed. Then, along every path, the size

of the corresponding PIDs strictly increases.

Proof. Verification is an exercise.

The following theorem summarizes the properties of the construction described above.

Theorem 76. The algorithm of the PID graph construction terminates in at most

|V | log |V | iterations, and produces a PID graph G with depth(G) ≤ log k and width(G) ≤
log k.

8.1.1 Example for need for several Extends

Here is a set V for which the procedure: for all v ∈ V ,

Sv = Extend (v, ∅)

does not yield a graph of depth(G) ≤ log |V |. We are not going to present all calculations

but only show the set V and the created graph.

58 CHAPTER 8. POPULATION RECOVERY

Example 77. We have n = 5 and the following set V :

1 2 3 4 5

v1 : 1 0 0 0 0

v2 : 0 1 1 0 1

v3 : 0 1 0 1 1

v4 : 1 0 1 0 0

v5 : 1 1 0 1 0

v6 : 0 1 0 0 0

v7 : 0 0 0 1 1

v8 : 0 1 0 1 0

v9 : 0 0 1 0 1

v10 : 1 0 0 1 0

v11 : 0 1 1 1 0

v12 : 1 1 1 1 1

v13 : 0 1 0 0 1


For which the graph we get is:

Where vertex 8 is points to all the other vertices but only one edge is drawn. One of the

longest paths in the graph is highlighted. We can easily see that

depth (G) = 4 > log |V |.

8.2 Solving the distribution recovery problem

In this section we outline an algorithm which solves the DRP using the PID graphs we

described in the previous section. Recall that we are given a set of vectors V and we

8.2. SOLVING THE DISTRIBUTION RECOVERY PROBLEM 59

want to reconstruct the probability π(v) for every v ∈ V up to some accuracy parameter

α, using the noisy or lossy sampler. The algorithm we shall describe in this chapter is

divided into 2 main phases an “estimation” phase and an “aggregation” phase.

The estimation phase is about using enough random sample to estimate the following

quantity:

p(v) =
∑
u∈I(v)

π(u).

Denote the adjacency matrix of the PID graph by M . Thus,

p = Mπ.

Since M is a triangular matrix with 1s on the diagonal, we can calculate π from p by

inverting M . The properties of G imply that the inversion of M is numerically stable, so

a small error in our estimation of p will not translate to a huge error in our estimation

of π:

‖π − π′‖∞ ≤ cost(G)‖p− p′‖∞,

where p = Mπ and p′ = Mπ′. To compute p′(v), our estimation of p(v), we just

take enough samples and measure statistics in the small window defined by Sv. Since

|Sv| ≤ log |V |, this can be done in polynomial time (with high probability).

60 CHAPTER 8. POPULATION RECOVERY

Chapter 9

Teaching

Scribe: Itai Rosenberg

9.1 Teaching dimension

In many natural learning scenarios, the teacher has an important part of the learning

process. However, most algorithmic learning models neglect this aspect. This lecture is

about models in which the teacher plays a bigger role.

The teacher or the textbook often has a common objective with the student – that

the student will learn quickly as possible the material. As a result, the teacher tries to

give helpful information, thereby aiding the student’s learning process and definitely not

being adversarial.

In terms of the classroom scenario, the task of a teacher is to give the students

information that will help all of them learn the subject quickly. Teaching in this sense

means giving information about a target object such that all admissible learners identify

it.

What is the teaching process? At the beginning of the teaching process, the teacher is

given a target object from a class of possible objects. Then, in every round, the teacher

selects some piece of information about that object and gives it to a set of learners.

Every learner in turn computes an hypothesis based on all information received so far.

The process ends when all learners hypothesize the target. The number of rounds until

this kind of teaching success is achieved depends on the teacher. The minimum number

of rounds taken over all teachers is a measure for the teachability of the target object.

The properties of the learners have a significant effect on the amount of information

that the teacher needs to provide that will allow all learners to hypothesize correctly.

61

62 CHAPTER 9. TEACHING

The only assumption that we make is that each learner’s hypothesis is consistent with

all the information that the teacher gave until now.

To make all class hypothesize correctly, the teacher need to give enough information

that the target object will be the only object consistent with the information that the

teacher gave so far.

Example: n+ 1 binary strings of length n as follow:

0000...00

0000...01

0000...10
...

1000...00

If we want to teach the entire class one of the strings containing a 1 it will be very

easy. We will just reveal the unique position of the 1. However, teaching the all 0 string

is much harder. We will have to reveal all the n bits which takes n rounds. Moreover,

the class, although rather simple, has a teaching dimension of n too, which is the highest

possible for a class of length n strings.

9.1.1 Notation

A concept class C is a subset of {0, 1}n. A learning algorithm for C receives a set S

of examples for a concept c ∈ C and computes a hypothesis h. A consistent and class

preserving learning algorithm may choose the hypotheses only from the set:

H(S) = {h ∈ C : h is consistent with c on S}

The set S is called a teaching set for c in C if H(S) = {c}.
The teaching dimension of c in C is

TD(c, C) = min{|S| : H(S) = {c}}.

The teaching dimension of a concept c specifies the number of examples an optimal

teacher needs for teaching c to all learners.

The teaching dimension of C is

TD(C) = max {TD(c, C) : c ∈ C}.

9.2. MONOMIALS AND 2-TERM DNFS 63

Two concepts differing only with respect to one instance x ∈ [n] are called neighbors.

The number of neighbor concepts of c is a lower bound for the teaching dimension of c

because each neighbor concept must be ruled out by a separate example.

9.2 Monomials and 2-term DNFs

A monomial (or conjunction of literals) is a function of the form v1 ∧ v3 ∧ v5. The set of

all concepts represented by monomial is denoted by 1 −Mn. Every monomial, except

the contradictory one (the zero function), can be represented by a string M ∈ {0, 1, ∗}n,

where M [i] = {0, 1, ∗} specifies whether the variable vi occurs negated, unnegated, or

not at all. For example, for n = 3, the vector 100 represents v1 ∧ v2 ∧ v3. We write

M1 ⊆M2 when for all i we have either M1[i] = M2[i] or M2[i] = ∗. That is, as function

M2 is at least M1.

A 2-term DNF is disjunction of at most two monomials M1∨M2. The set of concepts

represented by 2-term DNFs is denote by 2−Mn. It holds that 1−Mn (2−Mn

Claim 78. For all non-empty c in 1−Mn representable by a monomial with k variables,

we have TD(c, 1−Mn) = min{k+2, n+1}. The empty concept has a teaching dimension

of 2n because all its 2n neighbors are contained in 1−Mn.

Sketch. Consider e.g. the string 1k∗n−k. If k < n, then a minimum teaching set con-

tains two complementary positive examples (1k0n−k, 1) and (1k1n−k, 1) and k negative

examples (1i01k−i−10n−k, 0) for i = 0, . . . , k− 1. This results in a teaching set with k+ 2

elements. If k = n, a minimum teaching set contains the unique positive example (1n, 1)

and the n negative examples (1i01k−i−10n−k, 0) for i = 0, . . . , k − 1. This teaching set

has cardinality n+ 1.

9.2.1 Karnaugh map

The Karnaugh map is a pictorial method to consider boolean algebra expressions.

It reduces the need for extensive calculations by taking advantage of our pattern-

recognition capability. Boolean expressions are transferred from a truth table to a

two-dimensional grid, in which each cell position represents one combination of input

conditions, while each cell value represents the corresponding output value. In this rep-

resentation, minterms must be rectangular and must have an area that is a power of

two (i.e., 1, 2, 4, 8, . . .). The rectangles chosen should be as large as possible without

containing any 0s. Rectangles may overlap in order to make each one larger.

We can use the Karnaugh map to detrmine how many examples (positive and nega-

tive) are required to give the learner, so that she will be able to hypothesize the concept.

Example: A teaching set for 11∗∗ in

64 CHAPTER 9. TEACHING

v1 v1 v1 v1

v2
1111 1101 0101 0111 v4

v2
1110 1100 0100 0110 v4

v2
1010 1000 0000 0010 v4

v2
1011 1001 0001 0011 v4

v3 v3 v3 v3

The grey cells are the area that we want that all learners will hypothesize exactly. We

need to give 2 positive examples and 2 negative examples that are exactly k + 2 = 4:

v1 v1 v1 v1

v2 1 0 v4
v2 1 v4
v2 0 v4
v2 v4

v3 v3 v3 v3

9.3 Importance of context

The following demonstrates the importance of context. We saw that 1−Mn is easy to

teach when the context is 1 −Mn, but we now see that 1 −Mn is hard to teach when

the context is 2−Mn.

Claim 79. For c ∈ 1−Mn \ {{0, 1}n, ∅}, we haveTD(c, 2−Mn) ≥ 2n−1.

Proof. The concept c ∈ 1−Mn \ {{0, 1}n, ∅} can be represented as a monomial with at

least one variable, and at most n variables. Therefore, the concept c does not contain

at least half of the instances, and there are at least 2n−1 instances not in c. Let t be a

instance so that t /∈ c. The concept t∨c is in 2−Mn, and t∨c is a neighbor concept of c.

Therefore, c has at least 2n−1 neighbor concepts in 2−Mn, which proves the claim.

9.4 Optimal teachers

We can also consider the case where the learners assume that their teacher is optimal.

Namely, the teacher does not give superfluous example. This way (as we will see) the

number of examples needed for the learners to be successful can be reduced compared

to the teaching dimension.

Example: Class Sn over {0, 1}n that contains the empty concept c0 and all the

singleton concepts (cz : z ∈ {0, 1}n). Clearly, TD(Sn) = TD(c0) = 2n and TD(cz) = 1.

9.4. OPTIMAL TEACHERS 65

Now, as we saw before, to teach cz for z ∈ {0, 1}n is easy. The problem is only when

the teacher tries to teach the c0 concept. If the students do not make any assumption

about their teacher, it takes the teacher 2n rounds to teach c0. However, if the class

assumes the teacher is optimal, and the teacher gave a negative example, the students

can know for sure that the teacher is trying to teach them c0. This gives a much more

efficient teaching process (just one example).

The above assumption may be too strong, because it demands that the learner will

know for each concept its teaching set. We can demand a more realistic demand that

each learner knows only the teaching dimension for each concept. This knowledge allows

the learners to ignore all hypotheses whose teaching dimensions are smaller than |S|.
This allows to teach the previous example using 2 teaching examples instead of 2n.

	Outline
	Introduction
	Several models

	VC dimension
	Sauer-Perles-Shelah
	First proof: Shifting
	Second proof: Algebraic method

	Cover numbers

	PAC learning VC classes
	VC dimension
	Double sampling

	Cover numbers
	Preliminaries
	Proof

	Majority vote game
	The majority-vote game
	The power of majority gates

	Compression schemes for Dudley classes
	Compression schemes
	Halfspaces
	A compression scheme
	Dudley classes
	Sign rank

	Sample compression schemes
	Definition
	Learning using a sample compression scheme
	Connection to PAC learning

	Compression schemes for maximum classes

	Population recovery
	Partial IDs
	Example for need for several Extends

	Solving the distribution recovery problem

	Teaching
	Teaching dimension
	Notation

	Monomials and 2-term DNFs
	Karnaugh map

	Importance of context
	Optimal teachers

